일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- github
- AI 경진대회
- Docker
- 프로그래머스 파이썬
- Baekjoon
- 우분투
- 코로나19
- leetcode
- PYTHON
- 금융문자분석경진대회
- gs25
- 더현대서울 맛집
- 편스토랑 우승상품
- SW Expert Academy
- 캐치카페
- programmers
- 프로그래머스
- 백준
- 편스토랑
- hackerrank
- ubuntu
- Kaggle
- 맥북
- dacon
- 데이콘
- Git
- ChatGPT
- 파이썬
- 자연어처리
- Real or Not? NLP with Disaster Tweets
- Today
- Total
목록
반응형
전체 글 (1653)
솜씨좋은장씨

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in your array. For example, the length of your array of zeros n = 10. Your list of queries is as follows: a b k 1 5 3 4 8 7 6 9 1 Add the values of k between the indic..

[공공] AI프렌즈 시즌1 온도 추정 경진대회 출처 : DACON - Data Science Competition dacon.io 데이콘! 온도추정 경진대회 도전 1회차! 오늘은 저번에 분석해본 결과를 바탕으로 한번 도전해보았습니다. DACON AI프렌즈 시즌1 온도 추정 경진대회 데이터 이해하고 분석해보기 (feat. DACON YOUTUBE) 3월 ! 이번 달은 지난 금융문자분석경진대회와 원자력 발전소 상태판단 알고리즘 경진대회에 이어 DACON과 AI프렌즈가 함께 개최한 AI프렌즈 시즌 1 온도 추정 경진대회에 참가해보려합니다. 이 대회는 시즌 3까.. somjang.tistory.com 지난 분석을 통해 센서 측정데이터와 기상청의 기온데이터의 상관관계가 높다는 것을 알게되었습니다. 오늘은 이를 바..

이번 2020년 3월은 코로나 바이러스로 밖으로 나가는 시간도 많이 줄어 집에있는 시간이 많아진 만큼 Kaggle에서 진행하는 NLP관련 대회인 Real or Not? NLP with Disaster Tweets 대회와 데이콘에서 진행하는 AI 프렌즈 시즌 1 온도 추정 경진대회 [공공] AI프렌즈 시즌1 온도 추정 경진대회 출처 : DACON - Data Science Competition dacon.io 그리고 스타크래프트 게임 플레이 데이터를 바탕으로 진행되는 데이콘 월간 데이콘 3 행동 데이터 분석 대회를 진행해보려고 합니다. [게임] 월간 데이콘 3 행동 데이터 분석 대회 출처 : DACON - Data Science Competition dacon.io 총 상금은 250만원! 하루에 최대 3번..

Kaggle 15회차 오늘은 GRU모델을 활용해보기로 했습니다. 첫번째 제출 model = Sequential() model.add(Embedding(vocab_size, 100)) model.add(GRU(100)) model.add(Dropout(0.5)) model.add(Dense(2, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) history = model.fit(x_train, y_train, batch_size=32, epochs=3, validation_split=0.1) 결과 두번째 제출 model3 = Sequential() model3.add(Embed..

Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word (last word means the last appearing word if we loop from left to right) in the string. If the last word does not exist, return 0. Note: A word is defined as a maximal substring consisting of non-space characters only. Example: Input: "Hello World" Output: 5 Solution class Soluti..

Kaggle 14회차! 오늘은 금융문자분석밋업때 수상자들이 사용했던 lightGBM모델을 활용해보았습니다. Google Colab에 LightGBM설치 [Ensemble] Colab에서 LightGBM 사용하기! 원자력 발전소 상태판단 알고리즘을 도전해보면서 머신러닝을 공부하며 Gradient Boosing알고리즘 중의 하나인 LightGBM 알고리즘을 알게되었고 DACON KB 금융문자분석경진대회에서도 수상자들이 사용했다는 것을.. somjang.tistory.com 먼저 저는 Colab환경에서 진행하려고하여 위의 링크 방법대로 lightGBM을 설치해주었습니다. !nvidia-smi 무료버전임에도 Tesla P100 GPU가 할당되어 놀랐습니다. 먼저 lightGBM모델을 사용하기위해서 데이터를 처리..

You are given an unordered array consisting of consecutive integers [1, 2, 3, ..., n] without any duplicates. You are allowed to swap any two elements. You need to find the minimum number of swaps required to sort the array in ascending order. For example, given the array arr = [ 7, 1, 3, 2, 4, 5, 6, ] we perform the following steps: i arr swap (indices) 0 [7, 1, 3, 2, 4, 5, 6] swap (0,3) 1 [2, ..

Kaggle 13회차! 오늘은 저번 12회차까지 데이터 전처리를 했던 방법과 Glove 임베딩 기법을 사용하고 attention모델과 CNN모델을 활용하여 학습하고 결과를 도출해 제출해보았습니다. X_train = [] alphabets = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] god_list = ['buddha', 'allah', 'jesus'] train_text_list = list(train['text']) clear_text_list = [] for text in train_text_list: text..