Notice
Recent Posts
Recent Comments
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 편스토랑
- Git
- 금융문자분석경진대회
- 맥북
- gs25
- github
- 코로나19
- 파이썬
- 우분투
- 데이콘
- SW Expert Academy
- Kaggle
- ChatGPT
- AI 경진대회
- programmers
- Real or Not? NLP with Disaster Tweets
- 프로그래머스
- 자연어처리
- leetcode
- 더현대서울 맛집
- 프로그래머스 파이썬
- 백준
- ubuntu
- 편스토랑 우승상품
- hackerrank
- Docker
- Baekjoon
- PYTHON
- dacon
- 캐치카페
Archives
- Today
- Total
솜씨좋은장씨
[Kaggle DAY17]Real or Not? NLP with Disaster Tweets! 본문
Kaggle/Real or Not? NLP with Disaster Tweets
[Kaggle DAY17]Real or Not? NLP with Disaster Tweets!
솜씨좋은장씨 2020. 3. 14. 23:45728x90
반응형
Kaggle 대회 17회차!
오늘은 기존의 데이터 전처리 방식에서
tokenizer를 word_tokenize에서 TreebankWordTokenizer로 변경하고
토큰화 후 stemmer를 사용하지 않고 lemmatizer를 사용하여 보았습니다.
기존의 방식보다 조금 더 원형의 형태를 보존해서 토큰화가 된 것을 볼 수 있었습니다.
모델은 16회차의 모델에 그대로 적용해보았습니다.
첫번째 제출
from keras import optimizers
adam = optimizers.Adam(lr=0.05, decay=0.1)
model_1 = Sequential()
model_1.add(Embedding(vocab_size, 100))
model_1.add(GRU(32))
model_1.add(Dropout(0.5))
model_1.add(Dense(2, activation='sigmoid'))
model_1.compile(loss='binary_crossentropy', optimizer=adam, metrics=['acc'])
history = model_1.fit(x_train, y_train, batch_size=32, epochs=1, validation_split=0.1)
predict = model_1.predict(x_test)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day17.csv", index=False)
결과
두번째 제출
adam1 = optimizers.Adam(lr=0.03, decay=0.1)
model_2 = Sequential()
model_2.add(Embedding(vocab_size, 100))
model_2.add(GRU(32))
model_2.add(Dropout(0.5))
model_2.add(Dense(2, activation='sigmoid'))
model_2.compile(loss='binary_crossentropy', optimizer=adam1, metrics=['acc'])
history = model_2.fit(x_train, y_train, batch_size=20, epochs=1, validation_split=0.1)
결과
predict = model_2.predict(x_test)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day17_2.csv", index=False)
세번째 제출
adam2 = optimizers.Adam(lr=0.05, decay=0.1)
model_3 = Sequential()
model_3.add(Embedding(vocab_size, 100))
model_3.add(GRU(32))
model_3.add(Dropout(0.5))
model_3.add(Dense(2, activation='sigmoid'))
model_3.compile(loss='binary_crossentropy', optimizer=adam2, metrics=['acc'])
history = model_3.fit(x_train, y_train, batch_size=16, epochs=1, validation_split=0.1)
predict = model_3.predict(x_test)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day17_3.csv", index=False)
결과
네번째 제출
adam3 = optimizers.Adam(lr=0.05, decay=0.1)
model_4 = Sequential()
model_4.add(Embedding(vocab_size, 100))
model_4.add(GRU(32))
model_4.add(Dropout(0.5))
model_4.add(Dense(2, activation='sigmoid'))
model_4.compile(loss='binary_crossentropy', optimizer=adam3, metrics=['acc'])
history = model_4.fit(x_train, y_train, batch_size=20, epochs=1, validation_split=0.1)
predict = model_4.predict(x_test)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day17_4.csv", index=False)
결과
다섯번째 제출
adam4 = optimizers.Adam(lr=0.05, decay=0.1)
model_5 = Sequential()
model_5.add(Embedding(vocab_size, 100))
model_5.add(GRU(32))
model_5.add(Dropout(0.5))
model_5.add(Dense(2, activation='sigmoid'))
model_5.compile(loss='binary_crossentropy', optimizer=adam4, metrics=['acc'])
history = model_5.fit(x_train, y_train, batch_size=28, epochs=1, validation_split=0.1)
predict = model_5.predict(x_test)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day17_5.csv", index=False)
결과
다 제출하고 포스팅하는 과정에서 제출할 결과를 만드는 test데이터에
lemmatizer를 사용하지않고 한 것을 발견하여 내일은 lemmatizer를 활용하고 제출을 해보려고합니다.
읽어주셔서 감사합니다.
'Kaggle > Real or Not? NLP with Disaster Tweets' 카테고리의 다른 글
[Kaggle DAY19]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.17 |
---|---|
[Kaggle DAY18]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.15 |
[Kaggle DAY16]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.13 |
[Kaggle DAY15]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.12 |
[Kaggle DAY14]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.11 |
Comments