Notice
Recent Posts
Recent Comments
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- Real or Not? NLP with Disaster Tweets
- 캐치카페
- 금융문자분석경진대회
- 맥북
- 데이콘
- 자연어처리
- AI 경진대회
- Baekjoon
- ubuntu
- hackerrank
- 편스토랑 우승상품
- dacon
- 백준
- github
- 파이썬
- Docker
- ChatGPT
- Git
- SW Expert Academy
- 더현대서울 맛집
- 편스토랑
- 프로그래머스 파이썬
- programmers
- leetcode
- Kaggle
- 프로그래머스
- PYTHON
- gs25
- 코로나19
- 우분투
Archives
- Today
- Total
솜씨좋은장씨
[Kaggle DAY22]Real or Not? NLP with Disaster Tweets! 본문
Kaggle/Real or Not? NLP with Disaster Tweets
[Kaggle DAY22]Real or Not? NLP with Disaster Tweets!
솜씨좋은장씨 2020. 3. 21. 07:32728x90
반응형
Kaggle 도전 22회차!
오늘은 아르바이트를 다녀온 후 시간이 빠듯하여 그동안 제출했던 모델중에 가장 결과가 좋았던 모델들에
바뀐 데이터 전처리방식을 적용한 데이터를 활용하여 학습하고 결과를 도출해보았습니다.
데이터 전처리방식은 21회차와 동일합니다.
from keras.preprocessing.text import Tokenizer
max_words = 12396
tokenizer = Tokenizer(num_words = max_words)
tokenizer.fit_on_texts(X_train)
X_train_vec = tokenizer.texts_to_sequences(X_train)
X_test_vec = tokenizer.texts_to_sequences(X_test)
import matplotlib.pyplot as plt
print("문자의 최대 길이 :" , max(len(l) for l in X_train_vec))
print("문자의 평균 길이 : ", sum(map(len, X_train_vec))/ len(X_train_vec))
plt.hist([len(s) for s in X_train_vec], bins=50)
plt.xlabel('length of Data')
plt.ylabel('number of Data')
plt.show()
from keras.utils import np_utils
import numpy as np
y_train = []
for i in range(len(train['target'])):
if train['target'].iloc[i] == 1:
y_train.append([0, 1])
elif train['target'].iloc[i] == 0:
y_train.append([1, 0])
y_train = np.array(y_train)
from keras.layers import Embedding, Dense, LSTM, GRU, Dropout, Flatten, Conv1D, GlobalMaxPooling1D
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
max_len = 21
X_train_vec = pad_sequences(X_train_vec, maxlen=max_len)
X_test_vec = pad_sequences(X_test_vec, maxlen=max_len)
첫번째 제출
from keras import optimizers
adam2 = optimizers.Adam(lr=0.05, decay=0.1)
model_3 = Sequential()
model_3.add(Embedding(max_words, 100))
model_3.add(GRU(32))
model_3.add(Dropout(0.5))
model_3.add(Dense(2, activation='sigmoid'))
model_3.compile(loss='binary_crossentropy', optimizer=adam2, metrics=['acc'])
history = model_3.fit(X_train_vec, y_train, batch_size=16, epochs=1, validation_split=0.1)
predict = model_3.predict(X_test_vec)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day22.csv", index=False)
결과
두번째 제출
model2 = Sequential()
model2.add(Embedding(max_words, 100, input_length=21))
model2.add(Flatten())
model2.add(Dense(128, activation='relu'))
model2.add(Dense(2, activation='sigmoid'))
model2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = model2.fit(X_train_vec, y_train, epochs=1, batch_size=32, validation_split=0.1)
predict = model2.predict(X_test_vec)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day22_2.csv", index=False)
결과
세번째 제출
model2 = Sequential()
model2.add(Embedding(max_words, 128, input_length=21))
model2.add(Dropout(0.2))
model2.add(Conv1D(256, 3, padding='valid', activation='relu', strides=1))
model2.add(GlobalMaxPooling1D())
model2.add(Dense(32, activation='relu'))
model2.add(Dropout(0.2))
model2.add(Dense(2, activation='sigmoid'))
model2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history2 = model2.fit(X_train_vec, y_train, epochs=1, batch_size=16, validation_split=0.1)
predict = model2.predict(X_test_vec)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day22_3.csv", index=False)
결과
네번째 제출
adam3 = optimizers.Adam(lr=0.03, decay=0.1)
model_4 = Sequential()
model_4.add(Embedding(max_words, 100))
model_4.add(GRU(32))
model_4.add(Dropout(0.5))
model_4.add(Dense(2, activation='sigmoid'))
model_4.compile(loss='binary_crossentropy', optimizer=adam2, metrics=['acc'])
history = model_4.fit(X_train_vec, y_train, batch_size=20, epochs=1, validation_split=0.1)
predict = model_4.predict(X_test_vec)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day22_4.csv", index=False)
결과
다섯번째 제출
adam2 = optimizers.Adam(lr=0.05, decay=0.1)
model_3 = Sequential()
model_3.add(Embedding(max_words, 100))
model_3.add(GRU(32))
model_3.add(Dropout(0.1))
model_3.add(Dense(2, activation='sigmoid'))
model_3.compile(loss='binary_crossentropy', optimizer=adam2, metrics=['acc'])
history = model_3.fit(X_train_vec, y_train, batch_size=16, epochs=1, validation_split=0.1)
predict = model_3.predict(X_test_vec)
predict_labels = np.argmax(predict, axis=1)
for i in range(len(predict_labels)):
predict_labels[i] = predict_labels[i]
ids = list(test['id'])
submission_dic = {"id":ids, "target":predict_labels}
submission_df = pd.DataFrame(submission_dic)
submission_df.to_csv("kaggle_day22_5.csv", index=False)
결과
'Kaggle > Real or Not? NLP with Disaster Tweets' 카테고리의 다른 글
[Kaggle DAY24]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.22 |
---|---|
[Kaggle DAY23]Real or Not? NLP with Disaster Tweets! (2) | 2020.03.22 |
[Kaggle DAY21]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.19 |
[Kaggle DAY20]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.18 |
[Kaggle DAY19]Real or Not? NLP with Disaster Tweets! (0) | 2020.03.17 |
Comments