Notice
Recent Posts
Recent Comments
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 프로그래머스 파이썬
- gs25
- Baekjoon
- SW Expert Academy
- programmers
- 금융문자분석경진대회
- hackerrank
- Real or Not? NLP with Disaster Tweets
- 프로그래머스
- AI 경진대회
- 더현대서울 맛집
- PYTHON
- github
- 코로나19
- 파이썬
- 백준
- Git
- 데이콘
- 편스토랑 우승상품
- 맥북
- leetcode
- 캐치카페
- dacon
- 우분투
- Kaggle
- 자연어처리
- 편스토랑
- ChatGPT
- ubuntu
- Docker
Archives
- Today
- Total
솜씨좋은장씨
[leetCode] 29. Divide Two Integers (Python) 본문
728x90
반응형
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator.
Return the quotient after dividing dividend by divisor.
The integer division should truncate toward zero, which means losing its fractional part. For example, truncate(8.345) = 8 and truncate(-2.7335) = -2.
Example 1:
Input: dividend = 10, divisor = 3
Output: 3
Explanation: 10/3 = truncate(3.33333..) = 3.
Example 2:
Input: dividend = 7, divisor = -3
Output: -2
Explanation: 7/-3 = truncate(-2.33333..) = -2.
Note:
- Both dividend and divisor will be 32-bit signed integers.
- The divisor will never be 0.
- Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−2^31, 2^31 − 1]. For the purpose of this problem, assume that your function returns 2^31 − 1 when the division result overflows.
Solution
import math
class Solution:
def divide(self, dividend: int, divisor: int) -> int:
answer = math.trunc(dividend / divisor)
if answer > (pow(2, 31) - 1):
answer = pow(2, 31) - 1
elif answer < (pow(2, 31) * (-1)):
answer = pow(2, 31) * (-1)
return answer
'Programming > 코딩 1일 1문제' 카테고리의 다른 글
[leetCode] 326. Power of Three (Python) (0) | 2020.06.07 |
---|---|
[leetCode] 204. Count Primes (Python) (0) | 2020.06.06 |
[leetCode] 46. Permutations (Python) (0) | 2020.06.04 |
[leetCode] 75. Sort Colors (Python) (2) | 2020.06.03 |
[leetCode] 50. Pow(x, n) (Python) (0) | 2020.06.02 |
Comments